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Successful clinical remission to therapy for acute myeloid leukemia
(AML) is required for long-term survival to be achieved. Despite
trends in improved survival due to better supportive care, up to 40%
of patients will have refractory disease, which has a poorly under-
stood biology and carries a dismal prognosis. The development of
effective treatment strategies has been hindered by a general lack of
knowledge about mechanisms of chemotherapy resistance. Here,
through transcriptomic analysis of 154 cases of treatment-naive AML,
three chemorefractory patient groups with distinct expression pro-
files are identified. A classifier, four key refractory gene signatures
(RG4), trained based on the expression profile of the highest risk
refractory patients, validated in an independent cohort (n= 131), was
prognostic for overall survival (OS) and refined an established 17-
gene stemness score. Refractory subpopulations have differential ex-
pression in pathways involved in cell cycle, transcription, translation,
metabolism, and/or stem cell properties. Ex vivo drug sensitivity to
122 small-molecule inhibitors revealed effective group-specific target-
ing of pathways among these three refractory groups. Gene expres-
sion profiling by RNA sequencing had a suboptimal ability to correctly
predict those individuals resistant to conventional cytotoxic induction
therapy, but could risk-stratify for OS and identify subjects most likely
to have superior responses to a specific alternative therapy. Such
personalized therapy may be studied prospectively in clinical trials.
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Acute myeloid leukemia (AML) is a heterogeneous disease
characterized by abnormal clonal hematopoietic progenitors.

For the past several decades, standard intensive induction therapy
has involved a combination of cytarabine- and anthracycline-based
cytotoxic chemotherapy, for example, “7 + 3” (1). Achievement of
complete remission is required for long-term survival and cure (2).
Despite general trends toward improvements in overall survival
(OS) due to better supportive care, up to 30–40% of patients will
have chemorefractory disease, defined as failure to achieve a
morphological complete response (CR) after one to two cycles of
induction therapy (3–6). These patients face a particularly dismal
prognosis, with a median survival of less than 1 y; hence, a better
understanding of the disease biology and identification of successful
treatment approaches are critical to improve patient outcomes (7,
8). Understanding the heterogeneity of refractory AMLs and dis-
tinct cellular properties within each refractory group is critical to
decipher underlying resistance mechanisms to induction therapy.
Among known independent risk factors associated with pri-

mary refractoriness are leukemia biology variables such as cy-
togenetic risk, Fms-related tyrosine kinase 3 internal tandem
duplication (FLT3-ITD), and nucleophosmin (NPM1) mutation
status (9–11). The presence of unfavorable cytogenetic markers
such as a complex or monosomal karyotype, inv (3)/t(3;3), or
TP53 mutation predicts a poor response to intensive induction
chemotherapy, with only a minority of such patients achieving
remission after induction chemotherapy (12). In addition to cy-
togenetic and molecular factors, other risk factors for primary
refractory disease include clinical variables such as older age and
an antecedent hematological neoplasm (13–15). Recent studies

have suggested that primary treatment failures might also be the
result of AML clones harboring intrinsic properties of hemato-
poietic stem cells and quiescence, and gene expression signatures
may be predictive of outcome (11, 16–19).
To better characterize the mechanisms of resistance to conven-

tional cytotoxic induction therapy in AML patients, a transcriptomic
analysis of pretreatment samples from adult patients with newly di-
agnosed untreated AML was performed. Among those with refrac-
tory disease to 7 + 3 induction, signature pathways and gene sets
differentially expressed relative to complete responders were identi-
fied, unveiling heterogeneity in intrinsic resistance mechanisms and
allowing a classifier prognostic for OS to be established. In addition,
ex vivo drug sensitivity data from cells derived from the same patients
were analyzed, allowing for validation of pathway enrichment results
and providing insight into possible effective treatment strategies.

Results
Clinical Responses.Data from 154 patients treated at one of six US
academic medical centers met the eligibility criteria of having
received one cycle of 7 + 3 induction chemotherapy for a first
diagnosis of previously untreated AML with a postinduction
clinical restaging result recorded and having RNA sequencing
performed by a central laboratory on a pretreatment sample
(20). Patients had a mean age of 54 (range 21–77) y, 52% were
male, and 83% were white, with 32%, 29%, and 35% classified as
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favorable, intermediate, and adverse risk, respectively, based on 2017
European LeukemiaNet (ELN) risk stratification by genetics (21)
(Table 1 and SI Appendix, Table S1). One hundred eleven patients
(72%) were reported as having achieved a CR after one cycle of 7+ 3
induction chemotherapy. Survival data were available for 142 (92%)
of the cohort. Those achieving an initial CR had longer survival
(median OS of 33 mo) than refractory (Ref) patients (median OS of
13 mo) (Fig. 1A). ELN genetic risk group was associated with the
likelihood of achieving a CR and with OS (Fig. 1B and SI Appendix,
Fig. S1A). Overall, 84% of patients had at least one somatic mutation
detected, 19% had adverse cytogenetics, and 90% had a somatic
mutation and/or adverse cytogenetics (Fig. 1C).

Genome-Wide Expression Profiling of Refractory AML Patients. Pairwise
differential gene expression of pretreatment samples from all Ref
patients (n = 43) was compared with CR (n = 111) (Fig. 2A). The
top 100 differentially expressed genes are shown in Fig. 2B. Many
of the genes significantly differentially expressed at a false dis-
covery rate (FDR) < 0.05 have previously been implicated in drug
resistance across multiple cancers, including BAK1, PPP1R13L,
and NFKBIE (19, 22–24).
We next tested how well the 17-gene stemness (LSC17) score

(16) and the 29-gene predictive score with 2010 UK Medical
Research Council (MRC) risk group (PS29MRC) (19) predicted
the patient treatment response. While a high LSC17 score was
often observed in Ref patients, it is difficult to predict individual
patient responses due to considerable overlap with the range of
LSC17 scores observed in those achieving a CR (Fig. 3 A and B).
PS29MRC signatures for Ref patients were uninformative in this
cohort (SI Appendix, Fig. S1B). To access whether LSC17 score
can predict the OS within our patient cohorts, we investigated
the OS of patients with LSC17 scores greater than the median
(LSC17hi) and those with LSC17 scores lower than the median
(LSC17lo) before treatment. We found that LSC17 score was
able to stratify the survival probability within those achieving a
CR to an initial cycle of 7 + 3 induction (P = 0.017) (Fig. 3C), but
not in those who were refractory (P = 0.52) (Fig. 3D).

Gene Expression Reveals Heterogeneity Between Refractory AML
Patients. To explain the limited applicability of LSC17 scores
among those cases refractory to initial treatment, we performed
consensus clustering to evaluate the extent of heterogeneity among

these 43 refractory cases (25). The consensus cumulative distri-
bution function (CDF) and the delta area under the curve (AUC)
for CDF indicate that k = 3 best describes the 43 refractory
samples [Fig. 4A and SI Appendix, Fig. S1C; henceforth referred to
as refractory group 1 (Ref1, n = 21), refractory group 2 (Ref2, n =
11), and refractory group 3 (Ref3, n = 11)]. Relative to the com-
plete responders, Ref1, Ref2, and Ref3 had unique gene expres-
sion profiles based on a differential expression analysis. All
refractory groups exhibit higher LSC17 scores compared with
the complete responders (Fig. 4B), and Ref3 has the highest
LSC17 score. PS29MRC signatures were uninformative in
these subgroups (SI Appendix, Fig. S1D). The three clusters of
Ref patients based on the gene expression profiles described
above had significantly different survivals, with the worst
survival seen in the Ref3 subset (median OS of only 10 mo in
Ref3 vs. 13 mo in Ref1, 15 mo in Ref2, and 33 mo in CR; log-
rank test: P = 0.0018; Fig. 4C). Pairwise differential gene
expression of pretreatment samples from Ref1 (n = 21), Ref2
(n = 11), Ref3 (n = 11), and CR (n = 111) were compared
with each other. The top 100 differentially expressed genes
reveal unique gene expressions in each refractory subgroup
(Fig. 4D; enlarged figures are illustrated in SI Appendix,
Figs. S2–S4).
The comparison of OS within Ref patients indicated that the

gene expression signature of Ref3 patients could be of potential
significance for survival prediction. A list of genes was generated
by considering the FDR and fold change (FC) of genes that were
differentially expressed between Ref3 and Ref1/Ref2 subgroups.
The least absolute shrinkage and selection operator (LASSO)
(26, 27) was used to further reduce the number of genes, and the
final binary group classification was based on the support vector
machine (SVM) results. We identified GUSB, ALDH3B1,
AMOT, and RAB32 as four key refractory gene signatures (RG4)
that can better predict patient survival. Patients that had gene
signatures similar to those of Ref3 patients were labeled as
RG4pos (refractory gene model-positive), while the other pa-
tients were in the RG4neg (refractory gene model-negative)
group. Those within the RG4pos group (n = 25, 18%, median
OS of 10 mo) had significantly shorter survival than those who
were in the RG4neg group (n = 117, 82%, median OS of 33 mo)
(log-rank test: P = 0.007; Fig. 4E). This classification could also
stratify for survival within the Ref patient cohort or LSChi patient

Table 1. Patient demographics

Characteristic
Complete responders

(n = 111)
Refractory disease

(n = 43) Risk ratio P

Mean age at diagnosis 54 (±14) 52 (±16) 0.56
Race/ethnicity 0.28

White 95 (86%) 33 (77%) 0.92
Other 16 (14%) 10 (23%) 1.37

Gender 0.95
Male 57 (51%) 23 (53%) 1.03
Female 54 (49%) 20 (47%) 0.97

Molecular alterations <0.01
FLT3 wild type/NPM1 wild type 59 (53%) 32 (74%) 1.26
FLT3-ITD/NPM1 wild type 8 (7%) 6 (14%) 1.53
FLT3 wild type/NPM1 mutated 28 (25%) 1 (2%) 0.12
FLT3-ITD/NPM1 mutated 16 (15%) 4 (10%) 0.72

2017 ELN risk stratification <0.01
Favorable 46 (41%) 4 (9%) 0.29
Intermediate 30 (27%) 15 (35%) 1.19
Adverse 32 (29%) 22 (51%) 1.46
Unknown 3 (3%) 2 (5%) 1.43

Risk ratio = r=r0. r0 = 0.28 (percentage of total Ref patients); r, probability of being in the refractory group given
each category.
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cohort (SI Appendix, Fig. S5 A and B), and showed a higher level
of significance when combined with LSC17 groups (log-rank
t test: P = 0.0008; Fig. 4E) than the use of LSC17 groups alone.
This finding was then validated in an independent AML co-

hort from The Cancer Genome Atlas (TCGA) (28) (Fig. 4F and
SI Appendix, Fig. S5C). Among 131 patients from TCGA,
95 were predicted to be in the RG4neg group and 36 in the
RG4pos group. The survival of the RG4neg group was significantly
longer than that of the RG4pos group, with a median OS of
27 mo vs. 12 mo (log-rank test: P = 0.0049). Combined with
the LSC17 scores, the patients in both the RG4pos group and
the LSChi group (n = 14, 11%) had inferior OS to those in the
RG4neg group and LSClo group (n = 52, 40%), with a median OS
of 12 mo vs. 47 mo (log-rank test: P = 0.0035).

Refractory Subgroups Express Distinct Biological Pathways. To fur-
ther explore the biology of these three Ref patient clusters, gene
set enrichment analysis (GSEA) using both the canonical pathways
(cp; Fig. 5A) and the chemical and genetic perturbations (cgp; SI
Appendix, Fig. S6) collections from the Molecular Signatures
Database (MSigDB) was conducted. GSEA revealed both distinc-
tions and similarities among each of the three refractory clusters
in terms of the most differentially activated pathways, with Ref1
largely distinct from Ref2 and Ref3 in terms of the most
significantly enriched pathways (Fig. 5A). For Ref1, the dominant
enrichment signal indicated strongly increased expression of
pathways involved in the cell cycle and DNA replication/repair,
distinct from Ref2 and Ref3 (Fig. 5 B–E). Pathways involved in
translation were significantly down-regulated for both Ref1 and
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Ref3 (Fig. 5 B–E). For both Ref2 and Ref3, metabolic pathways
are significantly down-regulated, while showing an indication of
up-regulation in Ref1 (Fig. 5 B–E). For Ref3, the Reactome
generic transcription pathway was highly significantly up-regulated,
as were ATP-binding cassette (ABC) transporters (Fig. 5F and SI
Appendix, Fig. S7).
For the cgp collection (SI Appendix, Fig. S6), results were

generally in agreement with the cp collection (Fig. 5 A–D), with
Ref1 being generally distinct from the other two clusters and
highly enriched for cell cycle and DNA repair gene sets. Stem cell
signatures previously identified as being predictive of outcomes
and relapse in AML (16, 18) exhibit varying levels of activity
across our refractory subgroups (Fig. 4B and SI Appendix, Fig. S6).
The Ref3 cluster shows very strong up-regulation of many he-
matopoietic and lymphoid stem cell gene sets. The GSEA results
are in agreement with the LSC17 (16) distributions observed for
each of these refractory clusters, with Ref3 having the highest
LSC17 score (Fig. 4B). Together, transcriptome analysis revealed
three refractory groups with distinct cellular properties (Fig. 5E).

NPM1 Mutational Status. In addition to patient responses, in-
formation regarding the source of the specimens, karyotype, and
presence of somatic mutations in genes recurrently mutated in
AML such as NPM1 and FLT3-ITD was incorporated into our
analysis. Mutations in NPM1 and FLT3-ITD were identified in
32% (49 of 154) and 22% (34 of 154) of the samples, respectively,
as depicted in Table 1 and in concordance with previous findings
(9, 10, 29). There was a significantly higher fraction of NPM1-
mutated/FLT3 wild-type cases in the complete responders com-
pared with the refractory groups (28 cases vs. one case; P = 0.0014),
in accordance with previous observations (10, 30–32).
To examine the functional differences between resistant and

responsive NPM1 mutants, we conducted pairwise differential
expression analysis between these two groups (SI Appendix, Fig.
S8A). Likely due to the small number of Ref patients who had an
NPM1 mutation (only five samples), we detected no significantly
differentially expressed genes at an FDR < 0.1. GSEA indicated
that the refractory NPM1-mutant patients were most similar to the
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Ref3 group, however, with down-regulation of metabolism and
translation (SI Appendix, Fig. S8B).

Heterogeneous Drug Sensitivity of Refractory AML Subgroups. Dis-
tinct combinations of differentially expressed genes and path-
ways appear to be contributing to the refractory phenotype of
each refractory subgroup. In an attempt to validate the gene- and
pathway-level heterogeneity described above and also to trans-
late these results to the patient bedside, we tested whether these
refractory groups exhibit differential sensitivities to small-
molecule inhibitors with diverse modes of action. For 103 of the
154 patients described above (29 Ref patients and 74 responsive
patients), the Beat AML working group conducted an ex vivo
drug sensitivity assay on freshly isolated mononuclear cells of
AML patients exposed to 122 small-molecule inhibitors (20)
(Fig. 6A). A reduced AUC relative to that of the complete re-
sponders indicates that cell viability in the presence of the drug
was reduced relative to the complete responders, while a rela-
tively higher AUC indicates elevated cell viability relative to
complete responders. To test the validity of this analysis, we used
quizartinib, a drug known to significantly improve the OS of
FLT3-ITD–mutated relapsed/refractory AML patients, as a
positive control (33). In support of previous findings, we found
samples from FLT3-ITD–positive AML patients were killed
more efficiently with quizartinib compared with those from
FLT3-ITD–negative AML patients (Fig. 6B) as shown by their
lower AUC. The receiver operating characteristic curve indicates
that patients with a positive FLT3-ITD mutation will have lower
drug sensitivity values than patients with a negative FLT3-ITD mu-
tation 86.2% of the time. We used a t test and one-way ANOVA to
test for unequal mean AUC among the refractory group and the
complete responder group for each drug to identify those that sig-
nificantly affected cell viability of one or more subgroups. These
analyses identified nine drugs with significant effects (with both P
values for a t test and ANOVA < 0.05; SI Appendix, Table S2).

Interestingly, drug sensitivity was not uniform between refractory
subgroups, as shown using the examples of GW-2580, a cFMS kinase
inhibitor, and venetoclax, a Bcl-2 inhibitor recently approved by the
US Food and Drug Administration for AML (34) (Fig. 6C), which
showed significantly different efficacy between Ref subgroups and
compared with samples from patients achieving CR to conventional
therapy. Overall, Ref3 was the most resistant subgroup to all drugs
tested.

Sensitivity to Flavopiridol Across All Three Refractory Subgroups.
Flavopiridol (Alvocidib), a potent cell cycle inhibitor of CDK9
(35) and other targets (36), had the most significant and the
strongest cytotoxic effect on refractory AML patient samples
compared with complete responders (Fig. 6D). Specifically, it
had the strongest inhibitory effect for the Ref1 cluster, which
pathway analysis and GSEA identified as having significantly
elevated cell cycle signaling (Fig. 5 A and B). Using the data
available from AML patients with drug sensitivity (n = 103), we
found that the adverse (n = 33, 32%) ELN risk group had higher
sensitivity against flavopiridol compared with the favorable (n =
36, 35%) ELN risk group (t test: P = 0.028; Fig. 6E). We further
evaluated the gene expression difference between AML patients
who are sensitive or resistant to flavopiridol and found distinct
alterations in their gene expression (Fig. 6F). Interestingly, Ref
patients were more sensitive to flavopiridol compared with the
complete responders (nine Ref patients are flavopiridol-sensitive,
while only one Ref patient is flavopiridol-resistant) (Fig. 6F).
Together, these data suggest that a biomarker-driven approach
may be able to identify those likely to benefit from flavopiridol, so
that this promising drug candidate may be tested not only for
proven refractory AML patients but also in those as yet untreated
but likely to have a poor treatment response to conventional
cytotoxic induction therapy.

Discussion
Despite advances in supportive care and recent drug approvals
for the treatment of AML, the prognosis is still often poor.
Those with chemorefractory disease, encompassing up to 30–
40% of all adults with de novo AML, have a particularly dismal
prognosis, with a median survival of less than a year and less than
10% achieving long-term survival (8, 37). Although some pa-
tients can be salvaged with further intensive chemotherapy, no
regimen has been shown to be superior and benefit is lacking in a
large majority of cases (38).
Previously described predictive gene expression-based signa-

tures (16, 19) performed suboptimally in identifying, at the level of
an individual AML patient, resistance to initial 7 + 3 cytotoxic
induction therapy in this “real-world” cohort. We show, using both
transcriptome and ex vivo drug sensitivity analysis, biological
heterogeneity in cases refractory to an initial cycle of induction
chemotherapy. RNA-sequencing expression analysis clustered
samples from Ref patients in this cohort into three different
groups, Ref1, Ref2, and Ref3, each having distinct cellular
properties promoting intrinsic treatment resistance. Based on
GSEA, Ref1 was the most common refractory group and was
characterized by significantly up-regulated cell cycle, proliferation,
and DNA replication/repair gene sets and by down-regulated
translation. Ref2 was enriched with translation genes, while
metabolic pathways were significantly down-regulated. Ref3
was characterized by significant down-regulation of pathways
involving translation and metabolism as well as strong up-regulation
of many hematopoietic and lymphoid stem cell gene sets, including
ABC transporters (Fig. 5E and SI Appendix, Fig. S7).
These results help to shed light on the current controversy

about the role of ABC transporters, such as ABCG2, as predictors
and contributors to treatment failure in AML. Multiple reports
indicate ABC transporters are associated with poor-prognosis
AML, as well as with development of resistance to chemotherapy.
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However, the failure of the Eastern Cooperative Oncology Group
(ECOG) 3999 trial to demonstrate that the potent third-
generation ABCB1 inhibitor zosuquidar improves the response
to chemotherapy in AML (39) led to an editorial comment that it
is time to give up on the use of ABC transporter inhibitors in the
treatment of AML (40). Owing to the likely inadequacy of the
zosuquidar treatment in this ECOG study, the specificity of its
inhibition of only one of several ABC transporters, and the need
to stratify AML populations to target those patients with poor-
prognosis leukemia whose cells express ABC transporters (41),
we suggested that it was too soon to give up on ABC inhibitors
(42) and that further studies were needed to address these issues.
The current work shows that it is only a small subset (Ref3) of
intrinsically resistant AMLs that express significant amounts of

ABC multidrug transporters (ABCG2, ABCA2, ABCA9, and
ABCA6); therefore, any future efforts to inhibit these trans-
porters should be targeted to this subpopulation.
The distinct gene/pathway signatures of each refractory group

suggest that targeted agents may have variable but predictable
therapeutic benefits. To directly address this possibility, an ex
vivo drug sensitivity analysis was performed, revealing nine drugs
(t test and ANOVA: P < 0.05) with cytotoxic activity on at least one
of the refractory groups. Flavopiridol was identified as a particularly
strong candidate for refractory AML therapy. Flavopiridol targets
cell cycle regulation and had significant cytotoxicity for the
Ref1 group, which is enriched for up-regulated cell cycle gene
sets. It shows broad efficacy within refractory subgroups, how-
ever, consistent with the claim that it has the ability to kill, by
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Bcl-2–independent apoptosis, tumor cells resistant to other
chemotherapy agents (43). This drug has already successfully
been used in combination for the treatment of both newly di-
agnosed high-risk and Ref/relapsed AML patients (44–47),
with complete remission rates often superior to 7 + 3.
Biomarker-based clinical trials of this combination are now
ongoing (48).
Ref3 shows a poor response to all of the drugs, possibly because

Ref3 has more down-regulated pathways and a number of up-
regulated ABC transporters, which are well-characterized mech-
anisms of resistance to a broad range of anticancer drugs (42, 49),
diminishing this group’s response to drug treatment. Flavopiridol
is an ABCG2 substrate. This may explain why flavopiridol is less
effective in the Ref3 group, which expresses ABCG2. Although
flavopiridol is still effective in Ref3, its effect may be enhanced
with the help of ABC inhibitors. Ref3 also shows down-regulation
of translation and conventional metabolic pathways consistent

with recent reports regarding leukemic stem cells (50, 51). Thus,
further evaluation of other small molecules tailored against
enriched pathways in each refractory AML group may produce
more effective treatment outcomes. Finally, it is clear that the
Ref3 group is associated with inferior survival (Fig. 4C). We
established a binary classifier based on the gene expression sig-
nature of Ref3 with four selected genes, RG4, which was validated
in an independent AML cohort as both prognostic and also having
the ability to further improve LSC17-based stratification.
This study has several strengths and limitations. It provides in-

formation on the heterogeneity of refractory AML and mecha-
nisms of intrinsic resistance. The findings herein suggest that
small-molecule inhibitors targeting aberrant biological pathways
can produce antiproliferative effects in otherwise refractory leu-
kemia cells. Drugs with apparently low efficacy using this ex vivo
methodology, such as venetoclax and lenalidomide, may be ef-
fective clinically, however, as combination treatment or in specific
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Fig. 5. Characterization of enriched cp in refractory subgroups. (A) GSEA (MSigDB, C2 cp) of refractory subgroups (Ref1, Ref2, and Ref3) compared with the
complete responder group. Top 20 gene sets with an FDR < 0.05 in at least one comparison are plotted in the heat map (***P < 0.01, **P < 0.05, *P < 0.1). Red
and blue correspond to up-regulated and down-regulated pathways, respectively. GSEA of the top two pathways up-regulated (red) and down-regulated
(blue) in Ref1 (B), Ref2 (C), and Ref3 (D) is illustrated. The normalized enrichment score (NES) and FDR are indicated. (E) Characteristic altered cellular
processes in refractory AML. Red, blue, and green cells indicate Ref1, Ref2, and Ref3, respectively. (F) List of significantly up-regulated ABC transporters in
Ref3. The FC (compared with the complete responders) is shown. Adj., adjusted.
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disease subsets (34, 52). An assay with viability as the read-out may
underestimate the efficacy of drugs with noncytotoxic mechanisms
of action. We focused on complete remission to initial cytotoxic
induction therapy in patients treated with 7 + 3 chemotherapy;
those refractory to other approaches may have different profiles.
Similarly, we determined refractory status on the basis of response
after receipt of a single cycle of 7 + 3, while many such Ref pa-
tients achieve a CR only after a second cycle of induction (53).
Unfortunately, subsequent responses were not available for eval-
uation in this dataset. Patients were treated at US academic
medical centers according to local standards of care. While vari-
ations in 7 + 3 chemotherapy dosing exist and may have
differential benefit in particular AML subgroups, information

regarding potentially predictive factors from these patients would
typically not be available to the prescribing physician at the time of
initial treatment. Certainly, the 72% overall CR rate suggests
these patients received high-quality induction therapy. We also
allowed inclusion of patients treated with adjunctive therapy in
addition to 7 + 3, as CR rates for such combinations have not been
demonstrated to be statistically superior (54). Complete remission
is only a surrogate for OS, and while we dichotomized remission
responses here, we understand that remissions associated with
incomplete count recovery may have a different prognosis (55, 56)
and that reductions in disease burden can be quantified with
higher sensitivity (57, 58). The training dataset of refractory cases
used to establish the RG4 classifier was small, and the result may
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not be applicable to those treated with induction therapies other
than 7 + 3. While the results presented here are informative and,
in principle, point to the potential of personalized therapy for
refractory AML, their applicability to the clinical setting must
await clinical trials to establish the safety and efficacy of such
approaches (20, 47, 59–64). The biological heterogeneity
described here explains the limited efficacy of current therapeutic
approaches to treat refractory AML and the suboptimal ability of
pretreatment disease biology, clinical factors, and gene expression-
based signatures to correctly identify, on an individual patient
level, the likelihood of achieving complete remission after con-
ventional cytotoxic induction therapy.

Materials and Methods
Patient Cohort Selection. Our cohort was selected from the Beat AML dataset
(20) based on the following criteria. Adult patients (age > 21 y) with samples
coded as being from the specimen group “initial acute leukemia diagnosis”
with a diagnosis of “AML and related precursor neoplasms” at the time of
specimen collection were included. Patients with a PML-RARA fusion, t(15;17)
karyotype, and/or a diagnosis of acute promyelocytic leukemia were excluded.
Only patients treated with 7 + 3 (cytarabine and an anthracycline) with a
documented response to induction therapy were eligible. Only patients with
analysis of RNA sequencing from a preinduction therapy sample were eligible.

Patient Sample Normalization. The statistical analyses were performed using
R, version 3.5.0 (65). Raw counts of RNA-sequencing data from pretreatment
samples from 154 patients were obtained from the Beat AML working group
(20). Only genes expressed at >1 counts per million in at least 10 samples
were carried forward, and the count matrix was normalized using limma
voom quantile normalization (66).

Differential Gene Expression Analysis of Refractory Versus Complete
Responders. The normalized data were used for differential expression
analysis by the “lmFit” and “eBayes” functions in limma comparing the CR
and refractory groups. There were 49 significant genes with an FDR <
0.05 and 139 significant genes with an FDR < 0.1. The top 100 genes were
selected for the heat map. For differential expression analysis between re-
fractory subgroups and the CR group, the numbers of significant genes are
1, 0, 1,839 (FDR < 0.05) and 12, 0, 3,140 (FDR < 0.1) for the Ref1, Ref2, and
Ref3 clusters, respectively.

Sample Clustering of Refractory AML Patients. Samples were clustered using
ConsensusClusterPlus, v1.42.026 (34) at k = 2–10 and using the top 1,500 genes
based on median absolute deviation. These genes were then log2-transformed
and median-centered, and ConsensusClusterPlus was run for k = 2–10 with
80% resampling for 1,000 iterations of a hierarchical clustering based on
Pearson correlation distance. The optimal number of clusters was chosen based
on the consensus CDF and the relative change in area under the CDF curve.
When there were three clusters, the CDF reached its approximate maximum,
while there was no appreciable increase when clustering number increased.

Survival Analysis. Survival analysis was performed using the R “survival” and
“survminer” packages. Kaplan–Meier survival curves were plotted for
groups of interest with the log-rank test P value. Median OS in each group
was also calculated for comparison.

Refractory Group Gene Signature Modeling. Differential gene expression
analysis within three refractory subgroups was conducted using the same
method as the comparison between CR and Ref patients. Genes were selected
by choosing an FDR < 0.05 and an absolute value of logFC > 1. The genes
were annotated using the Ensembl database, and those within a protein-
coding transcript type remained in the list. The LASSO was used for further
variable reduction with cross-validation. Four genes (GUSB, ALDH3B1,
AMOT, and RAB32) remained to fit an SVM for classification with a Gaussian
kernel. All of the count values were log2-transformed.

Enrichment Analysis. GSEAs were conducted using preranked GSEA (67) and
the MSigDB, v6.2. The input data for the preranked GSEA are the t-statistics
from the differential gene expression analysis for all genes after filtering
(18,514 genes). The Entrez gene IDs were transformed to gene symbols, and
duplications were removed. Two gene set databases were used for the
analysis: c2.cp.v6.2.symbols.gmt (cp) and c2.cgp.v6.2.symbols.gmt (cgp).

Drug Sensitivity Analysis. AUC data for 122 small-molecule inhibitors were
obtained from the Beat AMLworking group (20). Inhibitors and patients with
more than 50% of missingness were removed from the analysis, leaving
105 inhibitors and 103 patients. A t test was used to test for significant mean
differences between samples from the CR group and refractory groups.
Single-factor ANOVA was used to test for significant mean differences be-
tween the CR group and refractory subgroups, and Dunnett’s post hoc test
and pairwise t test were used to calculate P values.

Clinical Information. For clinical information, we compared the distribution of
age, gender, race, ELN risk stratification, and molecular alterations between
two groups. Different statistical tests were applied based on the types of
variables (categorical/continuous) and the number of observations in each
category (t test, Fisher exact test, and χ2 test).

Data Availability. Genomic datasets used for this study had previously been
deposited in the database of Genotypes and Phenotypes (dbGaP) and Ge-
nomic Data Commons (20). The dbGaP study ID is 30641 and the accession ID
is phs001657.v1.p1. TCGA data were downloaded using the Genomic Data
Commons (GDC) Data Portal.
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