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Purpose of review

Despite advances in therapy over the past decades, overall survival for children with acute myeloid
leukemia (AML) has not exceeded 70%. In this review, we highlight recent insights into risk stratification for
patients with pediatric AML and discuss data driving current and developing therapeutic approaches.

Recent findings

Advances in cytogenetics and molecular profiling, as well as improvements in detection of minimal residual
disease after induction therapy, have informed risk stratification, which now relies heavily on these
elements. The treatment of childhood AML continues to be based primarily on intensive, conventional
chemotherapy. However, recent frials focus on limiting treatment-related toxicity through the identification of
low-risk subsets who can safely receive fewer cycles of chemotherapy, allocation of hematopoietic stem-cell
transplant to only high-risk patients and optimization of infectious and cardioprotective supportive care.

Summary

Further incorporation of genomic and molecular data in pediatric AML will allow for additional refinements
in risk stratification to enable the tailoring of treatment infensity. These data will also dictate the
incorporation of molecularly targeted therapeutics into frontline treatment in the hope of improving survival

while decreasing treatment-related toxicity.
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INTRODUCTION

Acute myeloid leukemia (AML) is relatively rare in
children but causes disproportionate mortality.
Although outcomes for children with AML have
improved over the last decades, overall survival
remains near 70% [1-3]. Due in large part to collabo-
rative international efforts, treatment approaches for
pediatric AML have converged to a standard that
includes four or five cycles of myelosuppressive che-
motherapy with cytarabine and anthracyclines fol-
lowed by hematopoietic stem-cell transplant (HSCT)
for a subset of patients. Collaborative efforts have also
enabled refinement of risk stratification on the basis of
clinical characteristics and molecular profiling. In this
review, we will discuss new insights into the risk strati-
fication of pediatric AML and review the literature
driving current therapies and upcoming clinical trials.

PROGNOSTIC FACTORS AND RISK
STRATIFICATION

The identification and validation of prognostic fac-
tors enabling therapy to be tailored to individual
patients has been the focus of many recent AML
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investigations. Advances in sequencing have iden-
tified molecular subsets with prognostic signifi-
cance, which, in conjunction with clinical factors,
drive current risk stratification.

Host factors

Unmodifiable patient characteristics such as age,
race, weight at diagnosis, and germline predisposi-
tion impact outcomes for children with AML. With
intensive chemotherapy and supportive care, infants
fare similarly to children but adolescents and young-
adults experience higher rates of treatment-related
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KEY POINTS

e Risk stratification in pediatric AML is now based on
cytogenetic and molecular disease features, as well as
response fo induction therapy detected by MRD.

e Induction therapy for AML includes administration of
anthracycline and cytarabine; consolidation therapy
varies by risk stratification and includes high-dose
cytarabine or HSCT.

e The incorporation of molecularly targeted agents for
specific AML subtypes is a central focus for
further investigation.

e Ongoing efforts to optimize supportive care,
particularly improving infectious prophylaxis and
minimizing cardiotoxicity, have enabled the dosing
intensification required to improve survival in

pediatric AML.

mortality (TRM) and relapse [4-10]. Compared
with their white counterparts, black children have
consistently had poorer outcomes on Children’s
Cancer Group (CCG)/Children’s Oncology Group
(COQG) trials [10,11]. This difference has not been
observed in smaller studies [12,13] but may be
attributable to increased illness severity at presen-
tation [14]. Finally, the CCG2961 study showed
that patients who are underweight or overweight
have worse overall survival compared with patients
with normal weight because of increased TRM [15].
These results were validated in a subsequent meta-
analysis [16].

Patients with AML or myelodysplastic predispo-
sition syndromes, such as Fanconi Anemia or
Kostmann syndrome, tend to present with AML
characterized by adverse cytogenetic features and
chemotherapy resistance. These patients often have
compromised ability to recover normal hematopoi-
esis following treatment and increased sensitivity
to chemotherapeutic agents with excess toxicity
necessitating dose attenuation. As such, patients
with bone marrow failure syndromes are usually
excluded from standard AML clinical trials. Thus,
the therapeutic approaches for these patients are
outside the scope of this review. Similarly, myeloid
leukemia of Down's syndrome is a unique disease
entity defined by mutations of GATA1. Although
children with trisomy 21 have a 150-fold risk of
developing AML [17], those who are younger than
four also have increased sensitivity to chemotherapy
with resultant remission rates over 90% and overall
survival above 80% [7,18-20]. Dose reduction
has been the focus of treatment protocols for this
subgroup.
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Clinical characteristics

The peripheral white blood cell (WBC) count on
presentation is predictive with WBCs above
100000 cells/pl linked to unfavorable outcomes [4].
Genomic and functional studies have begun to pro-
vide the biological basis for these elevated presenting
WBC counts. Studies of the prognostic significance of
cerebrospinal fluid (CSF) involvement at diagnosis
have been conflicting, which may be attributable to
differences in the definition of CSF involvement,
intrathecal chemotherapy selection, and the dose
and timing of high-dose cytarabine [21,22]. Central
nervous system and orbital chloromas are associated
with improved outcomes, whereas cutaneous disease
is linked to inferior outcomes, again likely because
of the underlying biology of these lesions [23]. None
of these presentations, however, is currently used
to risk-stratify patients, although intensified intra-
thecal therapy is recommended for patients with
CSF disease.

Cytogenetic and molecular abnormalities

Although AML is a heterogeneous disorder at the
cytogenetic and molecular levels, many of these
alterations have not been definitively associated
with prognosis in the context of current treatment
regimens. Alterations with potential prognostic sig-
nificance are summarized in Table 1. Future refine-
ments of risk stratification will likely be the result of
additionally identified and validated karyotypic and
molecular lesions.

Overall, the molecular landscape underlying pedi-
atric AML remains quite distinct from adults [24"]. For
one, the consensus low-risk cytogenetic group con-
sisting of core-binding factor, nucleophosmin 1 and
CEBPA gene mutations comprise approximately one-
third of pediatric AML, a larger proportion than seen
in adults [25]. In addition, cryptic translocations are
significant contributors to childhood AML with a high
prevalence in young children that declines in adult-
hood. Finally, somatic mutations impacting DNA
methylation are highly prevalent in adults, whereas
structural alterations in methyltransferase genes are
prevalent in young children, but rare or absent in
adults. These differences between children and adults
have importantimplications when considering poten-
tial therapeutic targets.

Minimal residual disease

Initial response to induction therapy is a critical pre-
dictor of outcome in AML. Failure to achieve a clinical
remission is highly predictive of poor outcome,
even if subsequent therapy results in a remission
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Table 1. Cytogenetic and gene rearrangements and gene mutations in newly diagnosed childhood acute myeloid leukemia

Molecular lesion Frequency in childhood AML Prognosis References
Alterations associated with a favorable prognosis
1(8;21) RUNXT-RUNXITTI 10-12% 5-year overall survival 80-90% [98,99]
Inv(16) CBFB-MYH11 10% 5-year overall survival 85% [98,99]
NPMT1 gene mutations 8-10% 5-year EFS 80% and OS 85% [100-102]

Very uncommon in young patients Abrogates adverse prognosis of FLT3 ITD

mutations
CEBPA gene mutations 5-10% 5-year overall survival 80% for double [103-106]
mutants; prognostic significance of single
allele mutations unknown
Alterations associated with a poor prognosis
Monosomy 7 2-4% 5-10-year overall survival 30-40% [50,98,107]
Monosomy 5, del(5q)
FLT3/ITD 10-20% 5-year overall survival 30-40% in [101,108-111]
Frequency increases with age patients with high allelic ratios®
Important therapeutic target

11923 (KMT2A) rearrangements 20% Prognostic significance dependent on [98,99,112,113]

Occurs most frequently in infants fusion partner but ranges from 5-year

Associated with secondary EFS above 90% for t{1;11) to 10% for
leukemias because of 16;11)
epipoophyllotoxin exposure

1(6;9) (DEK-NUP214) <1% 5-year overall survival 20% [114,115]
t1(7;12) (MNX-ETV) Up to 30% of children younger 3-year EFS 10-24% [116-119]

than 2 (and only found in this age

group)
1(5;11) (NUP98-NSD1) 10%
Highly associated with FLT3/ITD
inv(16)(p13.3¢24.3) 2%
(CBFA2T3-GLIS2) Occurs only in patients younger
than 3

Alternations of uncertain significance

1(1,22) <1% Primarily in patients younger
than 1

1(8;16) 10%

FLT3/TKD mutations 7%

KIT gene mutations <5% overall but 25% of patients
with favorable prognosis

cytogenetics

4year EFS 10% [114,120-122]

5-year EFS 27% [123,124]
Conflicting outcomes in the literature [125,126]
In infants diagnosed in the first month of [127-132]
life, spontaneous remission has been
observed
No prognostic significance in pediatric [101,108-111]
AML
May negatively impact response fo [133,134]

therapy; potential therapeutic target for
exploration

AML, Acute myeloid leukemia; EFS, eventfree survival; FLT3, FMS-ike tyrosine kinase 3; ITD, internal tandem duplication; TKD, tyrosine kinase domain.

“High mutant to normal allelic ratio, usually at least 0.3.

[6]. Multiparameter flow cytometry immunopheno-
typing has been progressively refined to be able to
distinguish leukemic blasts from normal hematopoi-
etic precursors, providing a far more sensitive meth-
odology for stratification than morphologic response
alone [26]. Results from cooperative group trials have
clearly demonstrated that minimal residual disease
(MRD) after induction is an independent prognostic
marker in patients with uninformative molecular
features [27-29]. However, the COG trials AAMLO3P1
and AAMLOS531 found that the presence of MRD in
patients with low-risk cytogenetics was not associated
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with adverse outcome. These studies conversely dem-
onstrated that high-risk patients had adverse out-
comes despite negative MRD. These data have
informed a two-tiered risk stratification schema,
where patients with informative cytogenetic or
molecular lesions are allocated to the appropriate risk
class and those without informative risk biomarkers
are stratified by disease response.

A newer approach to detecting MRD is based on
polymerase chain reaction or deep nucleic acid
sequencing, designed to detect specific gene muta-
tions or chromosomal translocations. Although
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such approaches offer the benefit of improved sen-
sitivity for low-level disease, they are currently only
applicable in half of AML patients because of molec-
ular heterogeneity and instability genetic changes
particularly when present at low allelic frequency
[30]. The specific role for molecular MRD in deter-
mining response to therapy or guiding therapeutic
decisions is an area of active research.

TREATMENT OF CHILDHOOD ACUTE
MYELOID LEUKEMIA

Intensification of chemotherapy — both in induction
and consolidation — has emerged as the fundamental
AML treatment paradigm [25]. Currently, induction
seeks to achieve an initial remission and is then
followed by consolidative courses of therapy, includ-
ing allogeneic HSCT for select patients. More
recently, novel and molecularly targeted agents have
been developed to enhance overall efficacy but main-
tain tolerability of current chemotherapy regimens.
Table 2 summarizes key findings from recent clinical
trials conducted by large consortia. In parallel, the
development of evidence-based supportive care
guidelines has been critical to supporting the inten-
sification of AML chemotherapy.

Approaches to upfront therapy

Since the early 1980s, induction therapy is based on
administration of daunorubicin and cytarabine

[31,32]. Multiple trials have tested alternative
anthracyclines, intensification of cytarabine dosing,
and inclusion of additional agents. To date, substi-
tuting alternative anthracyclines into this regimen
has not provided consistent improvements in remis-
sion rates [33-38]. However, the new formulation of
liposomal daunorubcin and cytarabine (CPX-351)
has recently been approved for the treatment of
AML in adults and demonstrated promise in the
pediatric relapsed/refractory setting [39"] and is
now being studied in frontline trials [25]. Simulta-
neously, multiple trials have sought to define the
optimal dosing and timing of cytarabine, the other
critical component of induction. Results of trials
comparing low-dose cytarabine (100-200mg/m?)
to high dose (1000-3000 mg/m? twice daily) are
mixed [29,40,41]. Thus, pediatric cooperative
groups remain divided on cytarabine dosing in
induction.

Collaborative groups have tested the addition of
a third agent to this backbone. The most recent
Medical Research Council (MRC) trial evaluated
the addition of etoposide to daunorubicin and cytar-
abine and reported no improvement in outcome for
patients randomized to receive etoposide [42]. Based
on these data, etoposide will be removed from stan-
dard therapy in the COG AAML1831 trial. Finally,
clofarabine, a second-generation purine nucleoside
analog has been incorporated into induction ther-
apy in some trials. The St. Jude Children’s Research
Hospital AMLOS (stood for acute myeloid leukemia)

Table 2. Characteristics and treatment results from selected clinical trials for childhood AML

Time of Overall Time of

Early Complete complete EFS + survival + EFS/OS
Study group Study No. of deaths response response standard standard evaluation
(trial acronym)® period pc::l'ientsb'c (%) rate (%)? evaluation error error (years) References
AIEOP (AAML2002/02) 2002-2001 482 3 87 2 courses 55%+£2.6 68%+24 8 [135]
BFM (AML2004) 2004-2010 611 2-3 88-89 4 courses 55+2 74+£2 5 [134]
COG (AAMLO531) 2006-2010  1022° 1.8 86.7 2 courses 46.9+4.4- 65.4+4.4- 3 [10]

53.1+£4.4 69.4+42

JPLSG (AMLOS) 2006-2010 443 2 courses 54+2 73+£2 3 [137]
MRC (AML12) 1994-2002 455 4 92 4 courses 53 64 10 [37,50,52]
EORTC-CLG (58921) 1993-2000 177 1 84 2 courses 49+ 4 62+4 7 [138]
NOPHO (AML2004) 2004-2007 151 1.3 97.4 2 courses 57+5 69+5 3 [139,140]
SJCRH (AMLO8) 2008-2017 285 1.5 93 2 courses 52.9% 64.6% 3 [43%]

COG AAMLO531 numbers represent outcomes for patients not receiving gemtuzumab ozogamicin compared with those who did receive this antibody conjugate.
This table was adapted from Pui et al. [1]. AIEOP, ltalian Association for Pediatric Hematology and Oncology; BFM, Berlin—Frankfurt—Munster group; COG,
Children’s Oncology Group; EFS, eventfree survival; EORTC-CLG, European Organization for Research and Treatment of Cancer-Children Leukemia Group;
JPLSG, Japanese Pediatric Leukemia/Lymphoma Study Group; MRC, Medical Research Council; NOPHO, Nordic Society of Pediatric Hematology and Oncology;

SJCRH, St. Jude Children’s Research Hospital.

“Results are reported for only those trials that had at least 150 patients and information provided for each of the column headings.

PNo. of patients excludes patients with Down Syndrome.
°Ages include patients from O to 15 years, inclusive.

dComplete response was determined by morphology of less than 5% leukemic blasts.

°Age for inclusion in trial was 0-29 years of age.
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study randomized patients to receive clofarabine
versus daunorubicin and etoposide with cytarabine
in the first block of induction therapy. This trial
reported a three-year overall survival and event-free
survival (EFS) that was not significant between the
two arms, although the point estimates for day 22
MRD and three-year overall survival suggest that the
clofarabine arm may be inferior [43%]. Further data
are needed before widespread adoption of this
approach. The Berlin-Frankfurt-Munster—acute
myeloid leukemia group will perform a similar ran-
domization in their current study.

Post-remission consolidation therapy consists of
high-dose cytarabine for patients who do not pro-
ceed to HSCT [10,29,42,44-47]. Although the need
for intensive consolidation is well established, the
necessary number of consolidation cycles remains
undefined. Most cooperative groups provide an
additional two to three cycles of intensive chemo-
therapy to give a total of three to five cycles of
chemotherapy. Although recent trials from the
Japanese cooperative group and MRC both demon-
strated no change in survival with an additional
cycle of chemotherapy [37,48-50], the COG
AAML1031 trial saw inferior outcomes for patients
treated with four cycles when compared with five on
the prior trial [51]. Subgroup analyses found that the
fifth cycle could be eliminated in patients with
favorable molecular features and negative MRD
without impacting survival. As a result, the number
of consolidation cycles will be based on molecular
features and disease response in AAML1831, the
upcoming COG phase III trial.

Hematopoietic stem-cell transplant

The efficacy of HSCT in AML is at least partially
linked to a graft-versus-leukemia (GVL) effect result-
ing from immune surveillance by donor T-lympho-
cytes. Of course, HSCT also poses risk of additional
TRM because of graft-versus-host-disease (GVHD),
infection, and organ toxicity. Thus, application of
HSCT must be carefully considered with potential
benefit, especially in an era of improved outcomes
using intensified chemotherapy regimens.

Patients with favorable-risk AML are currently
only offered HSCT in second clinical remission
[40,52,53-56]. In contrast, patients with high-risk
AML are nearly always offered HSCT as consolida-
tive therapy. This latter group includes patients with
complex cytogenetics, monosomy 7, monosomy 35,
del(5), high allelic ratio FMS-like tyrosine kinase 3
(FLT3)/internal tandem duplication (ITD) without
good prognosis modifiers, and those with poor
response to induction therapy [10,57,58]. Research
is ongoing to further define which patients with
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intermediate-risk AML will benefit from HSCT.
However, although short of definitive information,
there is enough evidence demonstrating that allo-
geneic HSCT results in more effective leukemia
eradication and overall patient survival that it a
reasonable option to consider in this still undefined
risk group subset.

As the field of transplantation evolves, the
improved TRM for alternative donor transplants
has provided the means to offer HSCT - and poten-
tial GVL - when no matched family donor is avail-
able [59]. Retrospective analyses in AML have
demonstrated that matched unrelated donors [60],
mismatched unrelated donors [61], and unrelated
cord blood [62,63] are all reasonable donor sources
no matched related donor is available [64,65]. In
addition, the use of haploidentical donors has seen
significant advances over the past several decades in
terms of feasibility, successful engraftment, and
reduction in GVHD and TRMs [66-73]. Haploident-
ical HSCT after af T-cell/B-cell depletion holds
promise for retaining the antileukemic capacity of
the graft while minimizing infection and GVHD
[74"]. Identification of which patients will benefit
from consolidative HSCT will be refined in the
coming years, but will likely not be based, as histor-
ically, on availability of a matched related donor.

Molecularly targeted therapies

Further therapy intensification of traditional cyto-
toxic chemotherapy is impractical given the risks of
both short-term and long-term organ dysfunction.
As a result, emphasis has been placed upon the
development of complementary, molecularly tar-
geted therapeutic approaches. Two agents have thus
far been incorporated into frontline phase III trials
for childhood AML. Several additional agents are
under investigation in early phase trials or used
in the relapsed setting. Table 3 describes some of
these approaches.

Gemetuzumab ozogamicin, a humanized anti-
CD33 monoclonal antibody conjugate, has sound
rationale for use in AML as the majority of cases
express CD33 [2]. The randomized Phase III trial
AAMLOS31 performed definitive efficacy testing of
gemetuzumab ozogamicin in children. Although
the addition of gemetuzumab ozogamicin did not
improve remission rates or overall survival, EFS was
improved compared with chemotherapy alone [10].
Based on the higher EFS and adult trials showing
benefit to this agent [75], gemetuzumab ozogamicin
will be included in the therapeutic backbone for the
next COG phase III trial.

Due to the adverse prognosis associated with
FLT3 mutations, and the demonstrated signaling

www.co-pediatrics.com 5



Hematology and oncology

Table 3. Novel drugs and treatment modalities in childhood AML

Drugs by modality

Comments

Immunotherapy

Monoclonal antibodies (e.g.,
gemtuzumab ozogamicin)

CAR T cells

Tyrosine kinase inhibitors

FLT3 inhibitors (e.g., sorafenib,
midostaurin, giltiritinib)

KIT inhibitor (e.g., dasatinib)

Proteasome/ubiquitin pathway inhibitors

Proteosome inhibitor (e.g., bortezomib)

NEDDS inhibitor (e.g., pevonedistat)

Epigenetic targetting
Methyltransferase inhibitors (e.g.,
azacytidine, decitabine)

Histone deacetylase inhibitors (e.g.,
vorinostat, panobinostat)

Other novel agents

BCL-2 inhibitors (e.g., venetoclax)

Anti-CD33 monoclonal antibody conjugated to cytotoxic calicheamicin. Based on data from
adults [75], and demonstrated activity in pediatric studies [2,10], gemtuzumab will be
incorporated info upfront therapy in the next COG phase Il frial

T cells with genetically engineered CARs to target tumor antigens are in development for AML.
The paucity of well characterized, leukemia-specific surface antigens in AML have
complicated their development; however, several antigens have been identified for
investigation including CD33, CD38, CD123, and Lewis-Y [141]. Early phase trials are
planned including a phase I/l trial of CD33 CAR in children and young adults
(NCT03971799)

There is biologic rationale for the use of FLT3 inhibitors based on the increased signaling
dependence in FLT3/ITD blasts. First generation multikinase inhibitors midostaurin and
sorafenib have shown promising efficacy when used with standard chemotherapy and as
postconsolidation maintenance [76™",77]. The latter has been studied in children specifically
[78,79]. Second generation FLT3 inhibitors, including giltiritinib, have increased potency and
selectivity for FLT3. These agents have been evaluated in early phase clinical frials in adults
and will be incorporated into upcoming pediatric studies [141,142%%,143]

Because of the frequency of KIT mutations in AML with favorable prognosis cytogenetics, KIT is
an appealing target for drug development

Proteosome inhibitors have been investigated in the treatment of multiple malignancies. Although
early phase studies in relapsed/refractory AML suggested efficacy and tolerability of
bortezomib, the most recently completed COG frial did not show a benefit to the addition of
bortezomib to upfront therapy

The small molecule has the potential for significant antitumor effect through triggering apoptosis
and autophagy. Early phase clinical trials to assess dosing and safety in conjunction with
fludarabine, cytarabine, and azacytidine are underway in relapsed/refractory AML
(NCT03813147) [144%]

These agents are incorporated into DNA resulting in a variety of mechanisms with antileukemic
potential, including but not limited to induction of global hypomethylation, downregulation of
oncogenes, reactivation of tumor suppressors, and increasing sensitivity to cyfofoxic agents.
Studies are ongoing to evaluate these agents alone, as priming for conventional
chemotherapy, or in combination with other epigenetic strategies including inhibition of

histone deacetylase, NEDD8 or BCL2 [141]

HDAC inhibitors induce cell cycle arrest and apoptosis. Early phase trials are evaluating the
feasibility of dosing with conventional chemotherapy in the relapsed/refractory setting

(NCT03263936)

BCL2 is an oncogenic protein that blocks apoptosis and is therefore a promising target in many
hematologic malignancies. Current studies are testing the combination of venetoclax with
cytarabine and an anthracycline for relapsed/refractory AML (NCT03826992,
NCT03194932) [144"]

The majority of the medications listed in this table are not labeled specifically for pediatric AML or are still under investigation. BCL2, B-cell lymphoma 2; CAR,
chimeric antigen receptor; COG, Children’s Oncology Group; FLT3, FMS-like tyrosine kinase 3; HDAC, histone deacetylase; ITD, internal tandem duplication.

dependence on FLT3/ITD blasts, small molecule
inhibition of FLT3 kinase has also been pursued as
a therapeutic strategy. Midostaurin, a first-genera-
tion kinase inhibitor, was recently approved by the
Food and drug administration (FDA) for treatment
of FLT3 mutated AML in adults on the basis of
promising efficacy data for its use in conjunction
with conventional chemotherapy, as well as use a
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postconsolidation maintenance therapy [76"%77].
This agent is not currently FDA approved in chil-
dren. Similarly, phase I studies of the multikinase
inhibitor sorafenib provided an early efficacy signal
for FLT3 inhibition in children [78,79]. The
AAML1031 trial nonrandomly stratified children
with high allelic ratio FLT3 ITD to receive sorafenib;
efficacy analyses are currently ongoing.
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Supportive care

Although the intensification of AML therapy has
improved outcomes for children with AML, this
approach also causes substantial morbidity and
mortality. The effectiveness of this therapy, there-
fore, depends on judicious and timely application of
supportive care.

More than half of pediatric patients with AML
will experience a severe bacterial infection while on
therapy and approximately 10% will experience inva-
sive fungal infections [80-82]. Thus, effective pro-
phylaxis has been a longstanding area of interest.
Recently, Alexander et al. [83™] reported the first
prospective, randomized trial of antimicrobial pro-
phylaxis in pediatric AML demonstrating that levo-
floxacin prophylaxis significantly reduces the risk of
bacteremia and neutropenic fever. Bacterial prophy-
laxis has therefore become standard at many institu-
tions. In addition, based on compelling retrospective
data that antifungal prophylaxis decreases invasive
fungal infection and TRM, antifungal prophylaxis is
recommended in pediatric AML [84-91]. A prospec-
tive randomized trial comparing antifungal agents in
children (NCT01307579) was recently completed
and those results are pending.

Recent work identifying worse overall survival
in patients experiencing on-protocol cardiac dys-
function has spurred new efforts to mitigate anthra-
cycline-associated cardiac toxicity, particularly
dexrazoxane, and liposomal anthracycline formula-
tions [92%]. Although an early study reported an
increased risk of secondary malignancy in Hodg-
kin’s lymphoma [93], subsequent reports in leuke-
mia patients have not identified the same risk [94—
96]. With recent data demonstrating a cardiopro-
tective benefit of dexrazoxane in pediatric AML
without a signal for increased relapse or toxicity
[97], dexrazoxane will be incorporated as the stan-
dard of care in the next phase III COG clinical trial.

CONCLUSION

Most currently used prognostic classification sys-
tems for childhood AML now consider cytogenetic
and molecular factors and disease response by MRD
with host factors and clinical characteristics for
determining risk. Titrating therapeutic intensity —
including the role of HSCT - to balance baseline risk
and TRM may provide the best likelihood of improv-
ing survival. Future risk stratification is likely to
include additional molecular/genomic factors as
well as epigenetic factors and drug sensitivity test-
ing. In addition, new molecularly based therapies
may alter the implications of some of these lesions.
Future prospective, clinical trials will be designed to
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therapeutically leverage such prognostic factors, as
well as further optimizing supportive care to mini-
mize therapy-related toxicity.
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