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Abstract: Acute promyelocytic leukemia (APL) is a rare disease accounting for only 5%–10% of
pediatric acute myeloid leukemia (AML) and fewer than 1000 cases occur annually in the United
States across all age groups. Characterized by t (15; 17), with a resultant PML-RARA gene fusion
driving leukemia development, advances in therapy have improved outcomes for APL significantly
in the past several decades, now making APL the most curable form of AML in both children and
adults. Cure rates in APL are now comparable to pediatric B-lymphoid leukemias. The success of
APL treatment is due, in part, to the breadth of understanding of the driver PML-RARA mutation as
well as collaborative efforts to quickly introduce and maximize the benefit of new therapies. Here, we
review the presentation, clinical features, pathogenesis, and treatment advances in pediatric APL.
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1. Introduction

Acute promyelocytic leukemia (APL) is a unique entity in acute myeloid malignancies typically
characterized by the balanced translocation t (15; 17)(q24.1;q21.2) and resultant PML-RARA fusion
gene [1,2]. The PML-RARA protein product has been identified as the primary driver responsible
for nearly all cases of APL, and enhanced understanding of the mechanism by which PML-RARA
leads to APL has drastically altered the therapeutic approach and outcomes for this disease. Patients
with APL now experience the highest cure rates of pediatric acute myeloid malignancies, with an
average overall survival (OS) near 95% and event-free survival (EFS) of 90% due to the combined use
of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) to induce the terminal differentiation of
APL blasts [3,4].

However, some patients with APL still experience complications in this disease and treatment,
with early death prior to or shortly after the initiation of therapy accounting for the majority of
fatalities, particularly in high-risk patients [5–7]. These early deaths are not typically included in
EFS and OS rates as many patients die before they can be enrolled on a clinical trial, and, therefore,
the actual survival rates of patients diagnosed with APL is lower than reported [8]. Deaths are often
due to bleeding complications related to coagulopathy at diagnosis or complications of differentiation
syndrome (DS), a unique syndrome in APL caused by excessive numbers of maturing myeloid cells
occurring within the first two weeks after the initiation of therapy [5–7]. In addition to early deaths,
the ongoing use of cytotoxic chemotherapy, such as high dose cytarabine and anthracyclines, further
exposes patients to severe treatment side effects such as left ventricular systolic dysfunction and
prolonged neutropenia with an increased risk of fatal infections [9]. Current studies are therefore
aimed at reducing therapy-related and associated long-term toxicities while maintaining high cure
rates, and the early results are promising. The majority of APL clinical trials allow for pediatric patients
but primarily include the adult population, and thus data specific to children often lags behind that of

Children 2020, 7, 11; doi:10.3390/children7020011 www.mdpi.com/journal/children

http://www.mdpi.com/journal/children
http://www.mdpi.com
http://dx.doi.org/10.3390/children7020011
http://www.mdpi.com/journal/children
https://www.mdpi.com/2227-9067/7/2/11?type=check_update&version=2


Children 2020, 7, 11 2 of 11

adults. Here, we will review the presentation, pathophysiology, and current treatment approaches to
pediatric APL.

2. Clinical Features

Acute myeloid leukemia (AML) in pediatrics consists of a heterogenous group of diseases
previously classified by morphology using the French-American-British (FAB) classification, with the
FAB-M3 subtype representing APL. Associations between cytogenetic changes and patient outcomes
have since shifted the focus toward cytogenetic classification to distinguish between types of AML
and allow for risk-stratified therapy. APL, characterized by t(15;17)(q24.1;q21.2), accounts for only
5%–10% of pediatric AML and increases in prevalence with age [10]. It is found in less than 2% of
infants with AML and subsequently increases steadily through adolescence and young adulthood,
with a peak incidence in the 4th decade of life [10]. APL occurs equally in males and females among all
age groups [9,11]. Risk factors associated with APL development have primarily been investigated
in adults. Case reports of therapy-related APL following etoposide for other cancers have been
reported, and one recent study suggests that obesity increases the risk for APL [12–14]. To date,
no pediatric-specific risk factors have been identified.

While APL is considered a favorable cytogenetic feature in risk stratification of AML as a whole,
additional risk groups within APL have been defined, allowing for risk-adapted therapy. A white blood
cell (WBC) count at diagnosis has proved to be the most effective predictor of outcome, and patients
presenting with a WBC less than 10,000 cells/µl are considered to be at standard risk (SR) of relapse
whereas those presenting with a WBC greater than or equal to 10,000 cells/µl are categorized as being
at high risk (HR) of relapse [15]. HR patients therefore receive more intensive upfront therapy to
mitigate relapse risk, but they also suffer from higher rates of early death due to coagulopathy and
complications of therapy [8,11].

A unique presenting feature of APL is profound coagulopathy comparable to disseminated
intravascular coagulation (DIC). Baseline coagulation tests should be routinely assessed in all patients
with leukemia at initial presentation, as the presence of a profound coagulopathy may be an early
indicator of APL. The severity of coagulopathy varies from isolated laboratory abnormalities to
life-threatening bleeding episodes. In addition to thrombocytopenia, patients with APL may have
low fibrinogen, prolonged prothrombin and activated partial thromboplastin times, and elevated
D-dimer [5,16]. The coagulopathy is primarily due to the altered expression of various coagulation
factors in the APL blasts themselves. The blasts demonstrate an increased expression of tissue factor,
cysteine protease, Annexin 2, tissue plasminogen activator, and urokinase-like plasminogen activator
receptor which cause both a hypercoagulable state and increased fibrinolysis [17,18]. In addition,
increased elastase plus the depletion ofα2 antiplasmin and a decreased thrombin activatable fibrinolysis
inhibitor further increase fibrinolysis [19]. The end result is an increased bleeding risk, which must be
closely monitored and aggressively treated with transfusion support. Serious bleeding events have
recently been reported in roughly 15% of pediatric APL patients with up to 10% of children suffering
fatal bleeding injuries in some series [5,6,8,20]. Death due to intracranial or pulmonary hemorrhage is
the leading cause of early death in APL and is seen primarily in HR patients [5,8]. While advances
in therapy have significantly reduced the risk of relapse in APL, rates of early death due to bleeding
events have unfortunately remained the same [21].

The diagnosis of APL is reliant on the identification of t (15; 17) and PML-RARA in blast cells, yet
cytogenetic results are often not immediately available and thus a high index of suspicion for APL must
exist in order to initiate therapy quickly and reduce the risk of immediate morbidity or mortality from
bleeding episodes. Coagulopathy at diagnosis should raise clinical suspicion, as should the presence
of certain features of the leukemia cells themselves. Auer rods, linear azurophilic granules within
the cytoplasm of blast cells composed of myeloperoxidase, are common in APL, though they may
also be seen in other AML subtypes [22]. Immunophenotyping of APL cells typically demonstrates
CD13, CD33, CD117, and myeloperoxidase positivity with a high side-scatter [23]. In addition,
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immunophenotyping may reveal absent or low expression of CD34, HLA-DR, CD10, CD11a, CD11b,
CD117, and CD18, with low level HLA-DR, CD11a, and CD18 having the most diagnostic power.
CD56 is a unique marker found in 10% of APL cases and has been suggested as a poor prognostic
indicator, with a higher risk of relapse in adult patients [24]. The combinations of these clinical and
cellular features may raise suspicion of APL enough to initiate therapy prior to confirmation of the
PML-RARA transcript.

Unlike other types of AML where extramedullary involvement of leukemia is common, patients
with APL rarely demonstrate disease outside of the bone marrow. APL blasts in the cerebrospinal
fluid (CSF) at presentation or relapse were previously described only in case reports, though CSF is not
routinely tested at diagnosis [25,26]. Recent data from the Children’s Oncology Group showed that up
to 25% of children had demonstrable APL blasts in the CSF in the absence of a traumatic tap when CSF
was tested [9]. However, patients with CSF involvement at diagnosis do not appear to have an increased
risk of relapse unless intracranial hemorrhage occurs, and therefore only patients with intracranial
hemorrhage are currently recommended to receive CNS-directed therapy [20]. Diagnostic lumbar
punctures are now avoided in APL as they introduce an added bleeding risk without therapeutic
benefit. Other extramedullary presentations of APL, such as myeloid sarcoma and chloromas, are also
rare but have been noted in case reports, primarily at relapse [27–29].

A final feature unique to APL is the risk of differentiation syndrome (DS) following the initiation
of treatment with ATRA and ATO, which occurs in up to 20% of children [9,30]. These medicines
induce the differentiation of APL blasts to mature myeloid cells, and when this occurs in excess, DS
can result, leading to life-threatening complications. Patients develop weight gain, fever, respiratory
distress, hypotension, and even renal failure due to excessive numbers of maturing myeloid cells
leading to endothelial damage and edema [31]. Patients with HR disease are at greater risk of DS,
though it may occur in SR patients with a low presenting WBC count as well [9]. The early recognition
and treatment of DS is necessary to minimize fatalities, and patients should be closely monitored
for DS after the initiation of therapy [31]. Treatment strategies include steroids and hydroxyurea as
soon as DS is suspected, though leukapheresis should be avoided as it does not affect outcomes and
subjects patients to unnecessary bleeding risk [31–34]. As DS is a significant contributor to early death
in APL, recent studies have employed prophylactic steroids to prevent DS with successful reductions
in DS-related deaths [11]. Patients presenting with severe illness due to presumed APL should be
started on therapy with ATRA plus steroids with or without hydroxyurea immediately even before
PML-RARA transcripts can be confirmed, as delaying therapy may actually worsen DS in such patients,
and early treatment does not typically preclude patients from enrolling on clinical trials.

3. Pathophysiology

The balanced translocation t (15; 17)(q24.1;q21.2) is the cytogenetic hallmark of APL and
the most common mutation driving APL development, described in 95% of APL cases [9,11,35].
The translocation joins the Promyelocytic leukemia (PML) gene on chromosome 15 with the retinoic
acid receptor alpha (RARA) gene on chromosome 17, leading to the PML-RARA fusion gene and the
PML-RARα protein [36–38]. The mechanism by which PML-RARα leads to APL development has
been well-described over the past several decades. PML-RARα retains the ability of RARα to bind
retinoic acid responsive elements and dimerize with retinoid X receptor protein but inhibits normal
gene transcription regulated by these elements, ultimately leading to the repression of RARα target
genes and blockade in differentiation at the promyelocyte stage [37]. An additional mechanism of
disease initiation was more recently described wherein PML-RARα prevents the formation of PML
nuclear bodies (NBs) [39]. NBs typically lead to the activation of p53 tumor suppressor pathways and
induce cellular senescence under stress situations [37]. Therefore, PML-RARα also leads to the failed
activation of p53 with decreased cell death and increased self-renewal. Together, the failure of myeloid
differentiation with uncontrolled proliferation contribute together to the development of leukemia.
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While the classic translocation described above is by far the most common lesion producing the
PML-RARA fusion, cryptic rearrangements or complex cytogenetic changes can also occur. Cryptic
rearrangements lead to the production of PML-RARA transcripts in the absence of definitive t (15; 17)
cytogenetics via fluorescent in situ hybridization and conventional karyotype analysis. Such cases
are uncommon but have been described previously in case reports [40]. Therefore, the presence of
PML-RARA transcripts is a more specific diagnostic tool than t (15;17) alone [36,41]. Even within t (15;
17) (q24.1; q21.2), there is variability in PML-RARA owed to variations in the PML gene breakpoint.
The RARA breakpoint is almost always in intron 2 of the RARA gene, however, the PML breakpoint
can occur in one of 3 different clusters, termed bcr [42]. Bcr1 occurs in intron 6 and produces a long
isoform mRNA. Bcr2 occurs in exon 6 and produces variable isoform mRNA. Bcr3 occurs in intron 3
and produces short isoform mRNA. The prevalence of each bcr varies with ethnicity and geographic
location, with bcr1 most common overall followed by bcr3 then bcr2 [43]. Pediatric data are limited but
show similar rates of bcr subtypes as adults with variations related to ethnicity [43,44]. Adult studies
have suggested that bcr may have prognostic significance, with reports of higher relapse rates in bcr2
and higher presenting WBC and associated poorer prognosis in bcr3 [45]. To date, there has not been
enough evidence to incorporate bcr into risk stratification for adults or children.

When APL is diagnosed in the absence of t (15; 17) and PML-RARA transcripts, an atypical RARA
fusion partner can often be identified. In these cases, the breakpoint of RARA is similar to that seen in
PML-RARA. Additional fusion partners include ZBTB16, NPM1, STAT5B, BCOR, PRKAR1A, FIP1L1,
and NABP1 [46–49]. Cases with these atypical RARA fusion partners often vary from traditional APL as
many lack Auer rods on morphologic evaluation, have an average lower age at presentation, and may
be less responsive to differentiation therapy [44,46]. There are also cases of APL that lack RARA
rearrangement altogether, but instead demonstrate fusions with other members of the retinoid signaling
family [44]. Most APL clinical trials exclude patients with atypical or absent RARA rearrangements,
and therefore the outcomes of these patients are limited to small case series and case reports. One series
reported that 9 of 18 patients with atypical APL were transitioned onto AML treatment regimens,
which showed superior EFS compared to APL therapy [44].

In addition to RARA rearrangements, co-occurring mutations and cytogenetic changes in APL
have been identified in a majority of children. Mutations in FMS-like tyrosine kinase gene (FLT3) are the
most common, described in up to 40% of pediatric cases [44,50]. There are 2 primary FLT3 mutations
that occur, internal tandem duplications (FLT3-ITD) and a missense mutation at amino acid 835, both
leading to constitutive activity of the tyrosine kinase receptor [44,51,52]. Both of these mutations are
also described in other types of AML and generally confer a poorer prognosis [53]. The use of FLT3
mutations as a prognostic indicator in APL has remained controversial and is not currently factored
into risk stratification [45,50,54]. Studies in both children and adults have shown that patients with
FLT3 mutations have a higher WBC at presentation and are at a higher risk of death [6,50,55]. Results
published by the Children’s Oncology Group in 2012 demonstrated a median presenting WBC of 32.95
in patients with FLT3 mutations compared to a median of 3.6 in patients with wild-type FLT3, and 70%
of patients with a FLT3 mutation had a presenting WBC above 10,000 whereas only 26% of patients with
wild-type FLT3 fell into the same category [50]. In addition, induction deaths occurred exclusively in
children with FLT3 mutations and 40% of patients failed to achieve complete remission (CR) following
induction, though OS and EFS were similar between groups [50]. It is important to note that treatment
regimens have changed since these data were published with continued improvements in CR, EFS,
and OS amongst all patients, and thus these same results may not be demonstrated in current trials.

4. Treatment Advances

Prior to the characterization of APL as the unique disease we know it as today (with a defining
genetic mutation), APL was treated with conventional chemotherapy (cytarabine and daunorubicin)
similar to other types of AML. Cure rates were poor, with remission rates less than 60% and high
rates of induction death due to bleeding and infectious complications [56]. Following the discovery of
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PML-RARA, the use of differentiation therapy with ATRA has significantly improved outcomes and
become the standard of care (Table 1). ATRA binds to PML-RARα, inducing a conformational change
leading to the recruitment of a proteasome and subsequent degradation of the fusion protein [37,39].
This allows wild-type RARα to resume normal function, thereby driving the differentiation of the
promyelocytic leukemia cell to a mature myeloid cell.

Table 1. Summary of the drugs used in acute promyelocytic leukemia (APL) therapy.

Drug Mechanism of Action Role in Current Therapy

ATRA Binding and degradation of PML-
RARα fusion protein

Standard treatment including induction
and post-induction

ATO Induces apoptosis of APL cells Standard treatment including induction
and post-induction

Anthracyclines Inhibition of DNA synthesis Only used in induction for HR patients

Tamibarotene Synthetic retinoid with mechanism
similar to ATRA Clinical trials for relapsed disease

Gemtuzumab
Ozogamicin

Induces cell death of CD33 expressing
cells via anti-CD33 drug conjugate Approved for relapse therapy

When ATRA was introduced over 3 decades ago, it was first trialed as a single agent and
provided CR rates of 75%–85% in adult studies [57,58]. However, relapses remained common and
thus combination therapy with both ATRA and conventional chemotherapy became standard. Using
concurrent therapy, patients of all ages began to experience relapse rates of less than 10% at 2 years [33,59].
Numerous studies have attempted to optimize chemotherapy regimens and identify the most essential
agents to improve outcomes. Anthracyclines appeared to be the most important chemotherapeutic
agent to decrease relapse rates, though the exact anthracycline used in treatment plans may vary.
Unfortunately, the total dose of anthracycline used in most regimens is very high and associated
with short- and long-term cardiotoxicity [60]. The contribution of cytarabine to improving outcomes
has remained controversial, as some studies show superior outcomes with cytarabine in induction
whereas others do not [61,62]. Cytarabine does increase the risk of prolonged myelosuppression and
subsequent infectious complications. Current studies aim to further reduce chemotherapy exposure,
and risk-adapted therapy has recently allowed for the removal of traditional chemotherapy for SR
patients and decreased cumulative anthracycline doses for HR patients [4].

The use of ATO has added to treatment success in APL and has further challenged the need for
conventional chemotherapy for patients with APL. ATO was introduced in the 1990s primarily as
a relapse therapy given as a single agent [63]. ATO triggers apoptosis in APL cells and maturation
in promyelocytes, working synergistically with ATRA to induce differentiation [37]. Following the
success of ATO in relapsed patients, it was then trialed in front-line therapy in combination with ATRA,
though it was initially limited to post-induction courses. In children, these studies yielded an average
OS of 94% and EFS of 91% and demonstrated noninferiority to traditional chemotherapy plus ATRA
even though cumulative anthracycline doses were lower than those used in the historical controls [9].
The APML4 trial by the Australasian Leukaemia and Lymphoma Group (ALL-G) was the first large
clinical trial to include ATO in induction therapy in combination with ATRA and included both adult
and pediatric patients [11]. This study concurrently removed anthracyclines from all SR therapy and
limited anthracycline in HR therapy to induction alone, with the complete removal of cytarabine from
all treatment groups. Even with significant reductions in chemotherapy exposure, the combined use
of ATO and ATRA in induction and post-induction therapy achieved EFS and OS of 92% and 96%,
respectively, for SR patients and 83% and 87% for HR patients with a cumulative relapse risk of 5%
in all groups [4]. The combination of ATO and ATRA without chemotherapy is now the standard
of care for SR adults, though HR patients still receive anthracyclines during induction. Recent trials
exclusively in pediatric patients aim to emulate these outcomes in children with risk-adapted and
response-based therapy to minimize the use of chemotherapy, but data are currently maturing and



Children 2020, 7, 11 6 of 11

have not yet been published. Thus, the current standard of care for children with APL remains ATRA
plus ATO in combination with chemotherapy for all patients.

Prolonged maintenance cycles with oral chemotherapy regimens have also long been part of
APL treatment. Whether or not maintenance therapy is required to maintain current outcomes is also
debated. A Cochrane review analyzed data from ten different trials and over 2000 patients of varying
ages with or without the use of maintenance therapy [64]. Treatment regimens varied widely between
studies though, as some used ATRA alone, some used chemotherapy alone, and some used combined
therapy. The data showed no significant improvement in OS with or without maintenance therapy or
between different types of maintenance therapy regimens, though disease-free survival was improved
with any type of maintenance therapy. However, the use of ATO in front-line treatment has further
challenged the benefit of maintenance therapy, as recent results from the Italian-German APL0406
study demonstrated a 5-year OS of 99.2%, an EFS of 97%, and a relapse rate of less than 2% in SR adults
treated with ATRA and ATO alone [65,66]. Studies in HR patients have not been published. The most
recent Children’s Oncology Group APL study, AAML1331, removed maintenance therapy from both
SR and HR treatment groups to validate these results in children.

The advancements demonstrated in APL therapy have caused a shift in focus toward minimizing
unnecessary therapy and improving the tolerance to treatment. The primary aims of most current
trials consist of maintaining high CR, EFS, and OS while limiting exposure to chemotherapy and
making treatment more tolerable with an improved quality of life. ATO in the United States is only
approved in intravenous formulations, therefore requiring prolonged hospital admissions or daily
home or clinic infusions in order to receive therapy. Recently, ATO has been developed in an oral
formulation with high bioavailability and similar effectiveness to the intravenous form in international
studies [67,68]. In addition, oral ATO has fewer QTc prolonging side effects than the intravenous
form, further reducing potential side effects of therapy. Studies utilizing oral ATO in pediatric patients
are occurring at international sites to determine if children achieve the same responses as adults,
as pharmacologic properties of medications can vary with age.

The addition of ATRA and ATO to upfront therapy for APL has resulted in resistance to these
treatments in the few patients who do relapse [69]. Resistance to ATRA is primarily due to mutations
of the binding domain of RARα, demonstrated in 40% of relapsed adults previously exposed to
ATRA therapy, thereby reducing the binding affinity of ATRA in these cases. The mechanism of
resistance to ATO therapy is not well described. Current relapse therapies include gemtuzumab
ozogamicin (GO), an antibody-drug conjugate targeting CD33 expressing cells, or clinical trials utilizing
tamibarotene, a synthetic retinoid with higher binding affinity for PML- RARα. The former is approved
for 2-year-old children and older in relapsed APL expressing CD33, whereas tamibarotene is still under
investigation. Small molecule inhibitors with targets such as tyrosine kinases, telomerase, and c-myc
have demonstrated some efficacy in preclinical studies using APL cell lines but have not yet advanced
to clinical trials [70–73].

5. Conclusion

Due to the characterization of the PML-RARA gene caused by t (15; 17) and its effect on leukemia
development, patients with APL now benefit from a targeted therapeutic approach primarily utilizing
differentiation therapy. This has allowed for significant advances in OS and EFS, making APL the most
curable form of AML today. With combined ATRA and ATO therapy, children and adults with HR
disease experience an OS of greater than 85% with less than a 5% risk of relapse at 5 years. Outcomes
in SR patients are even better with OS near 95% and a relapse risk of less than 5%. The primary risk of
death in HR patients occurs early in therapy due to coagulopathy at presentation and complications of
differentiation syndrome, though strategies to predict and mitigate these risks are being investigated.

The focus of APL therapy has now shifted to minimize exposure to chemotherapeutic agents and
associated side effects with promising results. Adult studies have successfully reduced anthracycline
exposure while maintaining high cure rates, and similar pediatric studies are ongoing. New challenges
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in the future will include developing effective relapse regimens, as patients exposed to ATO and ATRA
in initial chemotherapy are often resistant at relapse, though luckily the number of patients who relapse
is small. The identification of rare RARA fusion partners causing atypical APL also poses unique
challenges, as these patients have variable responsiveness to current differentiation therapy.

While outcomes in other pediatric AML types have remained unchanged for many years, the story
of APL provides hope that better outcomes are possible. Beyond APL, differentiation therapy has since
been investigated in other pediatric cancers, including use in maintenance therapy for neuroblastoma.
The success of APL now serves as a paradigm for targeted therapy in cancer treatment with revolutionary
advances in outcomes, which we hope to emulate in other cancers moving forward.
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